Isolation Forest For Anomaly Detection And Imbalanced Classification

Isolation Forest For Anomaly Detection

Isolation forest uses the number of tree splits to identify anomalies or minority classes in an imbalanced dataset. The idea is that anomaly data points take fewer splits because the density around the anomalies is low. Python’s sklearn library has an implementation for the isolation forest model. Isolation forest is an unsupervised algorithm, where the …

Isolation Forest For Anomaly Detection Read More »